Formation

# **IDFBC-ES & IDFBC-BES PANELS**

### **Boosting the Green Revolution in Battery Charging**



#### **GENERAL SPECIFICATIONS**

Voltage Current **Output Power** Channel by panel Voltage regulation Accuracy Steady current Accuracy

150 - 500V (charge), 500V - 300V (discharge) OA - 250A (charge), OA - 250A (discharge) up to 80KW per circuit up to 10 ≤± 0,5%

≤±1%

>>> Other ranges and specifications can be available on request

iDevices Technology, accuracy and reliability, charging and testing your battery.



www.idevices.com.br

## **iDFBC-ES & iDFBC-BES PANELS**



The iDFBC-ES (iDevices Formation Battery Charger - Energy Save) and iDFBC-BES (iDevices Formation Battery Charger - Bidirectional Energy Save) equipment incorporate high-frequency switching technology (IGBT). This rectification system sets a new standard for efficiency and performance in battery charging. The use of this technology allows our chargers to achieve efficiency levels above 95%, resulting in significant energy savings.

With the iDFBC-BES line, it is possible to perform regenerative discharges. During the formation process, the energy discharged from the batteries is returned to the electrical grid, offering a more efficient solution for the use of this energy. This feature not only contributes to energy savings but also demonstrates our commitment to sustainable solutions.



\* The values may vary depending on each customer's usage conditions.

Time (hours)

#### **CHARACTERISTICS**

- Compatible with iDFBC-View software The most advanced solution on the market for managing formation and charging profiles.
- High energy efficiency, power factor up to 0.99.
- Protection with DC breakers at the output of each circuit module.
- Regenerative discharges controlled by software (BES models only).
- Temperature monitoring.
- Emergency button with a safety relay for panel shutdown.
- DC EV protection relays at the output, isolating the battery circuit.

| SPECIFICATION            | IDFBCNI   | IDFBCI    | IDFBC-ES<br>IDFBC-BES | CONCLUSION                                                                                                                       |
|--------------------------|-----------|-----------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Efficiency               | ****      | ****      | ****                  | Energy savings, reduced heat generation, and smaller cabinets for higher power                                                   |
| Ripple                   | ****      | ****      | ****                  | Low current ripple enhances precision and control stability                                                                      |
| Power Factor             | ****      | ****      | ****                  | High power factor across the entire operating range eliminates the need for capacitive banks                                     |
| Load Consumption         | ****      | ****      | ****                  | Energy savings both during battery charging and at rest                                                                          |
| Open Circuit Consumption | ****      | ****      | ****                  |                                                                                                                                  |
| THD                      | ****      | ****      | ****                  | Less noise and interference in the electrical network                                                                            |
| Robustness               | ****      | ****      | ****                  | Greater durability, reliability, and performance in adverse conditions                                                           |
| Installation Environment | ****      | ****      | ****                  | Requires installation in controlled environments (dust, acid vapors, and temperature)                                            |
| Discharge (optional)     | Resistive | Resistive | Regenerative          | In resistive discharge, energy is dissipated as heat, while in regenerative discharge, energy is returned to the electrical grid |
| Isolation                | ****      | ****      | *****                 | Galvanically isolated circuits from each other, especially from the electrical grid, result in increased operator safety         |
| Cabinet Size             | ****      | ****      | ****                  | Reduced charging room space or more circuits in the same area                                                                    |
| Price                    | ****      | ****      | ****                  | Initial cost per circuit                                                                                                         |

